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ON THE LINEAR INTEGRALS OF THE CHAPLYGIN EQUATIONS* 

A.S. SUMRATOV 

A geometrical property is established of the lines of congruence determined by the 
first integral of the dynamic equations of the nonholonomic Chaplygin system, with 
the integral linear with respect to the velocities. In the case of two degrees of 
freedom and active nonzero forms applied to the system, the property yields explicit- 
ly the necessary and sufficient conditions of existence of a linear integral. The 
result is illustrated by an example. 

1. Let us consider a natural nonholonomic system, the equations of perfect constraints 
of which 

Q'@ =$ Biaq" (a= n + 1,n + 2,...,m) (1.1) 

are such, that the coefficients BI’ are functions of the first n generalized coordinates q* 
of the system only. If the coefficients of kinetic energy T of the system are also independ- 
ent of the coordinates g and the generalized active forces Qt = Ql(ql,...,p),Qa = 0 (i = l,..., 
n; a = n + 1,. . ., m), then the system is called a Chaplygin system /1,2/ and its dynamic equa- 
tions can be written in the form 

d aT* aT* ---- 
dt a4” aqt 

-(I*=$, lNij,(q',...,q")q"q" (i=&...,n) (1.2) 

Here T* and the right-hand side of the i-th equation of (1.2) are obtained by substitution 
into T and 

of the expressions (1.1) to replace qmu(a = n + l,..., m). Clearly, 

for any n-vector 

n 
&,l N~j~V"Vjd s 0 (1.3) 
1 

(vi). 
Let the subset of the configurational manifold of the system defined locally by the equa- 

tions q”+’ = . . . = qm = 0, be a submanifold. We shall denote this submanifold by X,,. Introduc- 
ing the metric 

ds'= 2T*dt'= aij&'@j (11 atill = 11 aij 11-l) (1.4) 

we transform X,, into a Riemannian manifold. The summation sign in (1.4) and subsequent expre- 
ssions is omitted, but the repeated indices will be understood to denote summation from 1 to 
n. 

We shall assume that the equations (1.2) admit the first (general) integral of the form 

Ei (q',. - *t qyq” = const (1.5) 

Differentiating (1.5) with respect to time we arrive, by virtue of the equations (1.2) and by 
equating the coefficients of the generalized velocities in the resulting expression to zero, 
at the expressions 

%rk + %kr + e(Nirk + Ntkr) = 0 (r, k = 1,. . ., n) 

%,Q' = 0 
(1.6) 
(1.7) 
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in unknown functions &,. .., &, (we denote by & the covariant derivatives). The vector 
field (&) determines in X,, a line congruence, the equation of which can be written as 

dqi/ds = 2 (41,. . . , qy (i :: 1). . . , n) ( !. . 8 ) 
where 

Ei = pri, p2 = a'j&Ej (i = 1,. . .( n) (1.9) 

Substituting (1.9) into (1.6) and (1.7), we can write these equations in the following equiv- 
alent form: 

p (7rk + %kr) + pkzr f Przk+ PTi (Nirk+Nikr) = 0 (r, k= 1,. .I ?Z) (1.10) 
TiQ” = 0 (ph. = dp/f3qk) 

(1.11) 

Multiplying (1.10) by rrrk and summing over all values of r,k = I,..., n, and taking into ac- 
count the conditions (1.3) and 

7,k7r7k = -g & (z,C) = 0 

we find, that the relation p = const represents the integral of (1.8). In this case from 
(1.10) it follows that 

~r+~iZ'(Ni,k+Nik,)=ax/aQk, x=-_]np (k=f,...,n) (1.12) 

where the quantities pk = rkrrr considered along any line of congruence (1.8) represent the 
components of the first geodesic curvature vector of this line. 

In the case of holonomic constraints (1.1) the tensor (Nill) is equal to zero, (Ei) is 
the Killing vector, the solution of (1.8) yields the trajectories of the one-parameter group 
of motions in the Riemannian manifold (X,, ds2) and the relations (1.12) express the knownfact 
(/3/, p.608) that the congruence of the lines of curvature of the trajectories in question is 
normal. 

2. Let us set n = 2. In addition to the congruence (1.8), we shall consider a congru- 
ence orthogonal to it and denote its unit vector by (vi). Since rini = 0, then rik$ z - ti7)ik 

(qik are covariant derivatives), therefore multiplying (1.10) by qrnk and performing the 
summation over all T, k = I,.. ., n we obtain the following scalar equation: 

qlkqk7'=7iq'qkNirk (2.1) 

The value of the left-hand side of (2.1) at some point (q1,q2)E X, is equal to the curvature 
(with a sign) of the line of the auxilliary congruence passing through this point. Clearly, 
the relations (1.12) and (2.1) are equivalent to (l.lO), and this proves the followingtheorem. 

Theorem. When n=2, equations (1.2) admit the integral (1.5) when and only when the 
vector with components (1.12) is potential and conditions (l.ll), (2.1) hold. 

If U"'QiQj # 0, then the relation (1.11) determines uniquely both congruences in question 
and the theorem yields, in a constructive form, the criterion of existence of the linear first 
integral of the Chaplygin equations. In the case of holonomic constraints (1.1) the con- 
ditions of the theorem reduce to the following two conditions: equation (2.1) shows that the 
lines of force are geodesic, and the relations (1.12) imply that the curvature of each line 
orthogonal to the force lines remains constant along this line. As we know /4/, both these 
conditions are necessary and sufficient for the existence of a linear first integral of the 
Lagrange equations. 

Example. We consider a problem of plane, nonholonomic motion /5/. A solid body rests 
on the O+y plane supported at three points: two of these points represent freely sliding feet, 
and the third point is the point c of contact of a cutting wheel fixed to the body. The 
wheel cannot slide in the direction perpendicular to its plane. We introduce a rectangular 
cEj coordinate system rigidly attached to the body. The Cg and Cc axes are parallel to the 
osy plane and the CE axis is directed along the cutting wheel. Let (5, Y, 0) be the coordin- 

ates of the point C in the fixed OZY system, (O,Q the coordinates of the center of mass of 
the body in the CE5 system, g the angle between the CE and Ox axes, the mass of the body 
M=l and J the central moment of inertia relative to the perpendicular to the Ozy plane. 
We assume that the active external forces can be reduced to a resultant force parallel to Cc 
and a couple,'the moment of which about the Oz axis is H(q)i:O. The constraint equation has 

the form 
I’ sin q - g' eos 'p = 0 (2.2) 
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The configurational manifold of the system is a direct product of the plane R¶ and the 
circumference. The manifold can be covered e.g. by four coordinate neighborhoods 

The points of every set I/h should be considered separately, but the arguments are the same in 

each case, therefore we shall limit ourselves to the points belonging to the coordinate neigh- 
borhood ul. 

We can write (2.2) at U1 in the form y' = x'tgcp. The kinetic energy of the body is 

T = 1/g [(z' - rp‘ T, cos @a + (y' - ~'6 sin rp)*] + V,Jg’* 

We take, for convenience, the abscissa of the center of mass q&=x - 6 sintp ana the angle ga= 

q as the generalized coordinates, We have 

y' = q'* tg q2 + q’ac sin pa, Ql = 0, Q* = H (pa) 

and the system is a Chaplygin system. According to (1.4) we have 

ds= = & (&')'+ J Wi* 

The Kristoffel symbols axe 

and the remaining ones are zero. The components of the tensor are 

sin qa sin 9’ _- N,, = NIP - 2 eosJq, 9 NEW = -cossqS 

and the remaining ones axe again zero. From the conditions (1.11) we find 
and ni=O. np ,:v'>+ Consequently c,=O,cp= 

zl= ifcosqr, z,= 0 
-ts$ and the vector the components of which are 

represented by the left-hand sides of the equations (1.12) is equal to zero, i.e. pEcanat. On 
the other hand, the curvature of the lines of force +&?r=O and this coincides with the ex- 
pression in the right-hand side of (2.1). It follows therefore that the equations of motion 
of the body have the integral 

q”/Cos qn = const 

which means that the modulus of the velocity of the center of mass of the body remains con- 
stant. 

3. When n = 2, the relations (1.11) and (2.1) represent the necessary and sufficient 
conditions for the equations (1.2) to admit a particular integral of the form 

Z#" = 0 (3.1) 

Indeed, the definition of the particular integral yields 

(z,* + rtNirk)q"q'@+ r+Q'~Mriq" (3.2) 

where the left-hand side contains the total derivative of (3.1) with respect to time obtained 
by virtue of the equations (l-2), and the multiplier M(q, q’) appearing in the right-handside 
is not known in advance. It is understood that the multiplier M can only have theform vlq" 
where YI are unknown functions of the variables ,$z .., q”. The identity (3.2) leads to equa- 
tions (1.11) and 

r,k f- Tkr + vi (Nirk + Nikr) = vrzk + vkrr (ra fC= 1, 2) (3.3) 

Let us set w1 = v,pI', 0, = Y$ (n' are the components of the unit vector of the congruence 
of the lines of force). We have three equations (3.3). 
?'zk,r'nk,r]Pnk we obtain, respectively, 

Contracting these equations with 
the following two equations: 

and the relations (2.1), Q.E.D. 

4. We note that in the above discussions nowhere have we used concrete analytic expres- 
sions for the tensors (ail) and (Nijb), but only the sign definiteness of the matrix 
equation (1.3). 

llaijll and 
Therefore all the results obtained remain valid for the holonomic systems 

acted upon by forces quadratic in velocities and possessing the properties (1.3). 
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